Testing Linear Correlation Coefficient & TI

Testing linear correlation coefficient r:

 $H_0: \rho = 0 \Rightarrow$ Linear Correlation is not significant

 $H_1: \rho \neq 0 \Rightarrow$ Linear Correlation is significant

Where ρ is the greek letter and it is pronounced rho.

Using P-Value Method:

1. Find CTS & P-value using TI:

 $\mathbf{STAT} \rightarrow \mathbf{TESTS} \downarrow \mathbf{LinRegTTest}$ Xlist: L_1 Ylist: L_2 Freq: 1 $\rho \neq 0$ RegEQ: blank

2. Find CTS & P-value using formula & TI:

Formula for C.T.S.	TI Command for P-value
$t = r \cdot \sqrt{\frac{n-2}{1-r^2}}$	tcdf with $df = n - 2$

- 3. Conclusion Process:
 - Use the testing chart to determine the validity of H_0 and H_1 .
 - Draw the final conclusion whether linear correlation is significant or not.

Predicting y value for a given x value:

• Use y = a + bx when linear correlation is significant.

Plug in the given x value to find the prediction value y.

• Use \overline{y} when linear correlation is not significant.

Guided Examples:

Example 1: Given n = 8, and r = 0.725, test the claim that the linear correlation is significant using $\alpha = 0.1$.

First we find the computed test statistics

$$t = r \cdot \sqrt{\frac{n-2}{1-r^2}} = 0.725 \cdot \sqrt{\frac{8-2}{1-0.725^2}} = 2.578$$

Now using TI command tcdf for Two-Tail Test with df = n - 2 and $\alpha = 0.1$, we find the P-value.

P-value $p = 2 \cdot \mathbf{tcdf}(2.578, E99, 6) = 0.042$

Since p-value $\leq \alpha$, the alternative hypothesis is valid which implies that the linear correlation is significant.

Example 2: Given n = 10, and r = -0.575, test the claim that the linear correlation is significant using $\alpha = 0.05$.

First we find the computed test statistics

$$t = r \cdot \sqrt{\frac{n-2}{1-r^2}} = -0.575 \cdot \sqrt{\frac{10-2}{1-(-0.575)^2}} = -1.988$$

Now using TI command tcdf for Two-Tail Test with df = n - 2 and $\alpha = 0.1$, we find the P-value.

P-value $p = 2 \cdot \mathbf{tcdf}(-E99, -1.988, 8) = 0.082$

Since p-value > α , the null hypothesis is valid which implies that the linear correlation is not significant.

Example 3: Given $\hat{y} = 12.5 + 2.8x$, and $\bar{y} = 28$, predict y for x = 5.

If we assume that the linear correlation is significant, we use the regression line to make the prediction.

 $\hat{y} = 12.5 + 2.8(5) = 12.5 + 14 = 26.5$

If we assume that the linear correlation is not significant, we use \bar{y} as the prediction.

Prediction $\bar{y} = 28$