Testing Linear Correlation Coefficient \& TI

Testing linear correlation coefficient r :
$H_{0}: \rho=0 \Rightarrow$ Linear Correlation is not significant
$H_{1}: \rho \neq 0 \Rightarrow$ Linear Correlation is significant
Where ρ is the greek letter and it is pronounced rho.
Using P-Value Method:

1. Find CTS \& P-value using TI:

$$
\text { STAT } \rightarrow \text { TESTS } \downarrow \text { LinRegTTest } \text { Xlist: } L_{1} \text { Ylist: } L_{2} \text { Freq: } 1 \text { } \rho: \neq 0 \text { RegEQ: blank }
$$

2. Find CTS \& P-value using formula \& TI:

Formula for C.T.S.	TI Command for P-value
$t=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}$	tcdf with $d f=n-2$

3. Conclusion Process:

- Use the testing chart to determine the validity of H_{0} and H_{1}.
- Draw the final conclusion whether linear correlation is significant or not.

Predicting y value for a given x value:

- Use $y=a+b x$ when linear correlation is significant.

Plug in the given x value to find the prediction value y.

- Use \bar{y} when linear correlation is not significant.

Guided Examples:

Example 1: Given $n=8$, and $r=0.725$, test the claim that the linear correlation is significant using $\alpha=0.1$.

First we find the computed test statistics
$t=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}=0.725 \cdot \sqrt{\frac{8-2}{1-0.725^{2}}}=2.578$
Now using TI command tcdf for Two-Tail Test with $d f=n-2$ and $\alpha=0.1$, we find the P -value.

P-value $p=2 \cdot \mathbf{t c d f}(2.578, E 99,6)=0.042$
Since p-value $\leq \alpha$, the alternative hypothesis is valid which implies that the linear correlation is significant.

Example 2: Given $n=10$, and $r=-0.575$, test the claim that the linear correlation is significant using $\alpha=0.05$.

First we find the computed test statistics
$t=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}=-0.575 \cdot \sqrt{\frac{10-2}{1-(-0.575)^{2}}}=-1.988$
Now using TI command tcdf for Two-Tail Test with $d f=n-2$ and $\alpha=0.1$, we find the P -value.

P-value $p=2 \cdot \operatorname{tcdf}(-E 99,-1.988,8)=0.082$
Since p-value $>\alpha$, the null hypothesis is valid which implies that the linear correlation is not significant.

Example 3: Given $\hat{y}=12.5+2.8 x$, and $\bar{y}=28$, predict y for $x=5$.

If we assume that the linear correlation is significant, we use the regression line to make the prediction.
$\hat{y}=12.5+2.8(5)=12.5+14=26.5$
If we assume that the linear correlation is not significant, we use \bar{y} as the prediction. Prediction $\bar{y}=28$

